34 research outputs found

    Monitoring networked infrastructure with minimum data via sequential graph fourier transforms

    Get PDF
    Many urban infrastructures contain complex dynamics embedded in spatial networks. Monitoring using Internet-of-Things (IoT) sensors is essential for ensuring safe operations. An open challenge is given an existing sensor network, where best to collect the minimum amount of representative data. Here, we consider an urban underground water distribution network (WDN) and the problem of contamination detection. Existing topology-based approaches link complex network (e.g. Laplacian spectra) to optimal sensing selections, but neglects the underpinning fluid dynamics. Alternative data-driven approaches such as compressed sensing (CS) offer limited data reduction.In this work, we introduce a principal component analysis based Graph Fourier Transform (PCA-GFT) method, which can recover the full networked signal from a dynamic subset of sensors. Specifically, at each time step, we are able to predict which sensors are needed for the next time step. We do so, by exploiting the spatial-time correlations of the WDN dynamics, as well as predicting the sensor set needed using sparse coefficients in the transformed domain. As such, we are able to significantly reduce the number of samples compared with CS approaches. The drawback lies in the computational complexity of a data collection point (DCP) updating the PCA-GFT operator at each time-step. The experimental results show that, on average, with nearly 40% of the sensors reported, the proposed PCA-GFT method is able to fully recover the networked dynamics

    Sampling of time-varying network signals from equation-driven to data-driven techniques

    Get PDF
    Sampling and recovering the time-varying network signals via the subset of network vertices is essential for a wide range of scientific and engineering purposes. Current studies on sampling a single (continuous) time-series or a static network data, are not suitable for time-varying network signals. This will be even more challenging when there is a lack of explicit dynamic models and signal-space that indicate the time-evolution and vertex dependency. The work begins by bridging the time-domain sampling frequency and the network-domain sampling vertices, via the eigenvalues of the graph Fourier transform (GFT) operator composed by the combined dynamic equations and network topology. Then, for signals with hidden governing mechanisms, we propose a data-driven GFT sampling method using a prior signal-space. We characterize the signal dependency (among vertices) into the graph bandlimited frequency domain, and map such bandlimitedness into optimal sampling vertices. Furthermore, to achieve dynamic model and signal-space independent sensor placement, a Koopman based nonlinear GFT sampling is proposed. A novel data-driven Log-Koopman operator is designed to extract a linearized evolution model using small (M = O(N)) and decoupled observables defined on N original vertices. Then, nonlinear GFT is proposed to derive sampling vertices, by exploiting the inherent nonlinear dependence between M observables (defined on N < M vertices), and the time-evolved information presented by Log-Koopman evolution model. The work also informs the planned future work to formulate an easy-to-use and explainable neural network (NN) based sampling framework, for real-world industrial engineering and applications

    Non-coherent detection for ultraviolet communications with inter-symbol interference

    Get PDF
    Ultraviolet communication (UVC) serves as a promising supplement to share the responsibility for the overloads in conventional wireless communication systems. One challenge for UVC lies in inter-symbol-interference (ISI), which combined with the ambient noise, contaminates the received signals and thereby deteriorates the communication accuracy. Existing coherent signal detection schemes (e.g. maximum likelihood sequence detection, MLSD) require channel state information (CSI) to compensate the channel ISI effect, thereby falling into either a long overhead and large computational complexity, or poor CSI acquisition that further hinders the detection performance. Non-coherent schemes for UVC, although capable of reducing the complexity, cannot provide high detection accuracy in the face of ISI. In this work, we propose a novel non-coherent paradigm via the exploration of the UV signal features that are insensitive to the ISI. By optimally weighting and combining the extracted features to minimize the bit error rate (BER), the optimally-weighted non-coherent detection (OWNCD) is proposed, which converts the signal detection with ISI into a binary detection framework with a heuristic decision threshold. As such, the proposed OWNCD avoids the complex CSI estimation and guarantees the detection accuracy. Compared to the state-of-the-art MLSD in the cases of static and time-varying CSI, the proposed OWNCD can gain ∼1 dB and 8 dB in signal-to-noise-ratio (SNR) at the 7% overhead FEC limit (BER of 4.5×10 −3 , respectively, and can also reduce the computational complexity by 4 order of magnitud

    A multi-eavesdropper scheme against RIS secured LoS-dominated channel

    Get PDF
    Reconfigurable intelligent surface (RIS) has been shown as a promising technique to increase the channel randomness for secret key generation (SKG) in low-entropy channels (e.g., static or line-of-sight (LoS)), without small-scale fading. In this letter, we show that even with the aid of RIS, collaborative eavesdroppers (Eves) can still estimate the legitimate Alice-Bob channel and erode their secret key rates (SKRs), since the RIS induced randomness is also reflected in the Eves’ observations. Conditioned on Eves’ observations, if the entropy of RIS-combined legitimate channel is zero, Eves are able to estimate it and its secret key. Leveraging this, we design a multi-Eve scheme against the RIS-secured LoS dominated scenarios, by using the multiple Eves’ observations to reconstruct the RIS-combined legitimate channel. We further deduce a closed-form secret key leakage rate under our designed multi-Eve scheme, and demonstrate the results via simulations.Engineering and Physical Sciences Research Council (EPSRC): EP/V026763/

    Adversarial reconfigurable intelligent surface against physical layer key generation

    Get PDF
    The development of reconfigurable intelligent surfaces (RIS) has recently advanced the research of physical layer security (PLS). Beneficial impacts of RIS include but are not limited to offering a new degree-of-freedom (DoF) for key-less PLS optimization, and increasing channel randomness for physical layer secret key generation (PL-SKG). However, there is a lack of research studying how adversarial RIS can be used to attack and obtain legitimate secret keys generated by PL-SKG. In this work, we show an Eve-controlled adversarial RIS (Eve-RIS), by inserting into the legitimate channel a random and reciprocal channel, can partially reconstruct the secret keys from the legitimate PL-SKG process. To operationalize this concept, we design Eve-RIS schemes against two PL-SKG techniques used: (i) the CSI-based PL-SKG, and (ii) the two-way cross multiplication based PL-SKG. The channel probing at Eve-RIS is realized by compressed sensing designs with a small number of radio-frequency (RF) chains. Then, the optimal RIS phase is obtained by maximizing the Eve-RIS inserted deceiving channel. Our analysis and results show that even with a passive RIS, our proposed Eve-RIS can achieve a high key match rate with legitimate users, and is resistant to most of the current defensive approaches. This means the novel Eve-RIS provides a new eavesdropping threat on PL-SKG, which can spur new research areas to counter adversarial RIS attacks

    High-dimensional metric combining for non-coherent molecular signal detection

    Get PDF
    In emerging Internet-of-Nano-Thing (IoNT), information will be embedded and conveyed in the form of molecules through complex and diffusive medias. One main challenge lies in the long-tail nature of the channel response causing inter-symbolinterference (ISI), which deteriorates the detection performance. If the channel is unknown, existing coherent schemes (e.g., the state-of-the-art maximum a posteriori, MAP) have to pursue complex channel estimation and ISI mitigation techniques, which will result in either high computational complexity, or poor estimation accuracy that will hinder the detection performance. In this paper, we develop a novel high-dimensional non-coherent detection scheme for molecular signals. We achieve this in a higher-dimensional metric space by combining different noncoherent metrics that exploit the transient features of the signals. By deducing the theoretical bit error rate (BER) for any constructed high-dimensional non-coherent metric, we prove that, higher dimensionality always achieves a lower BER in the same sample space, at the expense of higher complexity on computing the multivariate posterior densities. The realization of this high-dimensional non-coherent scheme is resorting to the Parzen window technique based probabilistic neural network (Parzen-PNN), given its ability to approximate the multivariate posterior densities by taking the previous detection results into a channel-independent Gaussian Parzen window, thereby avoiding the complex channel estimations. The complexity of the posterior computation is shared by the parallel implementation of the Parzen-PNN. Numerical simulations demonstrate that our proposed scheme can gain 10dB in SNR given a fixed BER as 10-4, in comparison with other state-of-the-art methods
    corecore